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Abstract. A modified antiferroelectric model (MF-model) is introduced. It is shown that the 
general solution of this model, whose basic ingredients are two energies el and €2, includes 
as special cases the F-model (c1 = €2 = e )  and the Ising model (cl = E, 92 = 05). The 
MF-model has a polymer equivalent in which a polymer bond can assume one of three 
available states, one trans state (energy zero) and two gauche states with energies c1 and c2. 

The partition function of the six-vertex model on a square lattice with N points can be 
written 

N 

The summation is extended over all possible arrow configurations, C, on the square 
lattice, t(i)  indicates the type of vertex configuration at the ith lattice point, and 
wg = exp(-&> is the Boltzmann weight of a vertex having energy eE The six different 
kinds of vertices (ice rule) are shown in figure 1 (6 = 1,2, . . . ,6). Consider the case 
w1 = 0 2  = w3 = w4 = exp(-@e) < 1 , o ~  = 0 6  = 1. This is the well-known antiferroelectrk 
F-model (Rys 1963) solved by Lieb (1967). It undergoes an infinite-order transition 
(Lieb 1967, Lieb and Wu 1972). The ground state consists of alternating vertices ( 5 )  
and (6),  and so has no spontaneous polarisation. 

Suppose that the lattice is divided into two sublattices A and B (figure 2) with NA and 
NB (NA = NB) points respectively. We generalise (1) to 

where w ; = exp(-pe;). We introduce a modified antiferroelectric model, which we 
shall call the MF-model, as follows: 

w1 = w2 = w ;  = wk = exp(-pE1) < 1, 0 3 = w 4 = w ;  = w i  = e x p ( - p ~ ~ ) < l ,  

0 5 = 0 6 = 0 ;  =wk =l.  (3) 
The partition function of the m-model depends on two energies 
Z y  (€1, €2) .  The F-model is the special case €1 = €2  = E ,  i.e. 

and E ~ ,  i.e. 

zy  ( E ,  E )  = ZF,(€). (4) 
The zero-field Ising model is also a special case of the MF-model, deriving from the case 
el > 0 and €2 = 00; something far from obvious. This is the main result of this Letter. 
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Figure 1. The six ice rule vertex configurations. 

Figure 2. The square lattice and the two sublattices A and B. Arrows specify a C 
configuration on the square lattice. 

Indeed, we shall show that 

zEF(e1, €2 = a) = ~ x P ( - N P E ~ / ~ ) z ” / ~  ~ 2 )  ( 5 )  

where ZkI2 ( J )  is the partition function of the zero-field Ising ferromagnet (J > 0) on a 
square lattice with N/2 points and diagonal periodic boundary conditions. The proof of 
(3, although very simple, requires two transformations which we proceed to describe. 

We first show that ZEF (e1, e2 = a) is the generating function for certain weighted 
self-avoiding polygons on the square lattice. We consider the Manhattan square lattice 
(MSL) shown in figure 3 (Kasteleyn 1963). A set of circuits (i.e. self-avoiding polygons 
following the orientation of the lattice) on the MSL, that cover all lattice points, is called 
a polygon (or polymer) configuration on the MSL (for an example see figure 4). Let tpc 
be the number of polygonal corners of a polymer configuration on the MSL. The 
partition function 

z ~ M S L  ( E )  C e X p ( - t p C P E ) ,  (6 )  
PC 

where the summation is extended over all possible polymer configurations, PC, on the 
MSL, defines a polymer model on the MSL in which a polymer bond can assume one of 
two available states: one trans state (energy zero) in which the bond is collinear with its 
preceding bond, and one gauche state (energy E) in which the bond makes a corner with 
its preceding bond. We can show that 

zEF (€1, €2 = a) = Z k , M S L  (€1) .  (7)  
Indeed, if c2 = CO, then vertices (3) and (4) do not occur on sublattice A, and vertices (1) 
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Figure 3. The Manhattan square lattice. The points are classified in four sublattices AI, Az, 
B1 and Bz. 

Figure 4. Open points and dotted lines show the underlying lattice of the Manhattan square 
lattice. + and - signs in these points specify a spin (Ising) configuration. Full oriented lines 
show the polymer configuration on the Manhattan square lattice (small full points) 
corresponding to the spin (Ising) configuration on the underlying square lattice as well as to 
the C' configuration on the square lattice shown in figure 2. 

and (2) do not occur on sublattice B. Let C' denote the allowed six-vertex configura- 
tions on the square lattice when €2 = 00 (for an example see figure 2). Figure 5 shows 
how a C' configuration can be converted into a polymer configuration on the MSL. The 
correspondence is one-to-one and the energies are completely matched if cl = E. This 
proves (7). Note that each sublattice A(B) is further divided into two sublattices A1 and 
A2 (B1 and Bz) (see figure 3), so that the converted polygon configuration is compatible 
with the orientation of the MSL, under the rules specified in figure 5.  Thepolymer 
configuration on the MSL shown in figure 4 corresponds to the C' configuration on the 
square lattice shown in figure 2. 

To prove ( 5 )  it remains to show that 

z L S L  (€1 = ~ x P ( - N , E / ~ ) z ~ , ~  (ED). (8) 
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Figwe 5. Below the four allowed vertex configurations on each sublattice AI, B1, BZ and 
A*, we show the bond arrangements by which we may convert a C' configuration on the 
square lattice to a polymer configuration on the Manhattan square lattice. 

This has been shown in Malakis (1979) for a MSL with diagonal periodic boundary 
conditions, and the proof for the present case is exactly the same. However, for 
completeness we shall briefly repeat the correspondence between polymer configura- 
tions on the MSL and Ising configurations on the underlying square lattice. The 
underlying lattice of the MSL is obtained by associating with every four-anticycle (which 
is an oriented four-cycle in which adjacent lines have opposite directions) of the MSL a 
new point. To form the underlying lattice, we then join these points by lines whenever 
the corresponding four-anticycles have a point in common. The underlying lattice of 
the MSL is shown in figure 4; it has the structure of the square lattice and obeys diagonal 
periodic boundary conditions. The one-to-one correspondence between spin 
configurations on the underlying square lattice and polymer configurations on the MSL 
may be seen from figure 4. A + sign (spin-up state) in any point P of the underlying 
lattice is associated with two horizontal bonds placed above and below the point P, 
whereas a - sign (spin-down state) is associated with two vertical bonds placed on the 
left and on the right of the point P. These bonds form a polymer configuration on the 
MSL, and one can see from figure 4 that a polygonal corner corresponds to a pair of 
neighbouring spins in opposite spin states. If the energies of such configurations are 
matched we obtain (8) (Malakis 1979). 

In conclusion we have established an equivalence between the six-vertex and the 
Ising models. This is of theoretical interest, because up to now the only equivalence 
known between vertex and Ising models is derived from the eight-vertex model (Lieb 
and Wu 1972, Kasteleyn 1975). The ground state of the MF-model consists of 
alternating vertices ( 5 )  and (6),  and so has no spontaneous polarisation like the F-model. 
However, unlike the F-model, the MF-model assumes that molecules placed on sublat- 
tices A and B may be different, and therefore the energies assigned to vertices with a net 
electric polarisation may be different for the two sublattices. Furthermore, even for a 
system with identical molecules on sublattices A and B, the real physical situation is 
undoubtedly more complicated than the picture described by such models; therefore it 
is important to investigate the effect of a different energy assignment. Since the 
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MF-model is a staggered-type model, we believe that its general solution cannot be 
obtained by a simple application of the existing methods for solving vertex models (Lieb 
and Wu 1972). However, the special case el = e, €2 = 00, shown to be equivalent to the 
king model, does represent an antiferroelectric model in which molecules on sublattice 
A cannot assume polarisation on the northwest axis, whereas molecules on sublattice B 
cannot assume polarisation on the northeast axis. It is quite possible that the infinite- 
order transition is obtained only in the case el = eZ, whereas the more general case 
el # ez may yield an Ising-type transition with a logarithmic singularity in the specific 
heat. It should be pointed out that Wu (1969) considered a different modified F-model 
and found that it has an Ising-type transition. Wu’s model is an eight-vertex model and 
consequently does not satisfy the ‘ice constraint’ which is supposed to account for local 
electrical neutrality (Slater 1941). 

Finally, we note that the MF-model has an interesting polymer equivalent. The 
polymer equivalent of the F-model was discussed by Nagle (1974). In this model, a 
polymer bond can assume one of the three available states on the square lattice, one 
trurts state (energy zero) in which the bond is collinear with its preceding bond, and two 
gauche states (energy e )  in which the bond makes a corner with its preceding bond. The 
polymer equivalent of the Ising model was the subject of a recent paper (Malakis 1979) 
and is essentially described by formulae (6) and (8) of this Letter. In this case one of the 
two gauche rotations is ruled out by the restrictions of the Manhattan orientation 
imposed on the square lattice. The polymer equivalent of the MF-model is obtained 
through the well-known equivalence between six-vertex configurations and polygon 
configurations on the square lattice (Lieb and Wu 1972, Nagle 1974). However, unlike 
Nagle’s polymer model, the two gauche rotations available to each bond have different 
energies (€1 and €2). This would be a more realistic model than the previous two for the 
order-disorder transition in polymeric systems due to the rotational isomeric inter- 
action (Flory 1956, Nagle 1974, Malakis 1979). 
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